Corosion, Passivity and Metallurgy

1

Bernard Baroux

Professeur à l'Institut National polytechnique de Grenoble

- Introduction to the aqueous corrosion of metals and alloys
- Passivity and Passive films
- Passivity breakdown
- Metallurgical effects

Part I: Introduction to the aqueous corrosion

of metals and alloys

by

Bernard Baroux

Institut National Polytechnique de Grenoble

Corrosion is an irreversible phenomenon which results from the basic thermodynamic characteristics of the materials and the nature of their environment. In this lecture we will look at the water corrosion phenomena applicable to metals and alloys, but excluding both high temperature oxidation phenomena and corrosion of non-metallic materials

Experimental Evidences

• Formation of rust and other corrosion products

Metallurgical effects

• Electrochemical (anodic) dissolution

 \Rightarrow loss of weight and pollution...

What is a metal ?

A metal is an assembly of cations (positive) arranged in a lattice structure immersed in a gas of delocalized electrons (negative) which ensure the cohesion of the structure. A metal is a reservoir of electrons. Consequences:

- 1) A metal is a good conductor of electricity and heat.
- 2) The electron gas reflects light waves \Rightarrow optical properties
- 3) A metal is ductile (dislocations easy to displace)
- 4) A metal is oxidizable (easy separation of cations and electrons).

Consequences on the history of metallurgy

Consequences on the Corrosion resistance : The Paradox of passivity

The more oxidisable materials can protect themselves by the formation of their own layer of corrosion in the form of a very thin protective film (called a passive film).

For these materials, the question of corrosion resistance no longer arises in terms of rate of dissolution, but in terms of the stability of the protective oxide.

These materials are described as "stainless", quite simply (but this paradox is only apparent) because their oxidation is fast enough and intense enough to inhibit any subsequent corrosion.

> Example: the Corrosion resistance of S.S. results from their Chromium content (more than 12%)

The predominant role of water in Corrosion processes

The oxygen in the iron oxides is drawn essentially from the molecules of water and not at all or only very slightly from the oxygen in the air, as is most often thought (the oxygen only encourages the cathodic reaction as will be explained later).

In temperate climates, atmospheric corrosion may be considered a water corrosion phenomenon due to the presence of a film of water on the surface of the metal which generally constitutes a cold surface encouraging the formation of condensation.

Oxydoreduction of water

Other instances of oxido-reductive processes

$$4OH^{-} \leftrightarrow 2H_{2}O + O_{2} + 4e^{-} \qquad \text{and} \qquad 2H_{3}O^{+} + 2e^{-} \leftrightarrow 2H_{2}O + H_{2}$$
$$NO_{3}^{-} \rightarrow NO_{2} + \frac{1}{2}O_{2} + e^{-} \qquad , \qquad Fe^{+++} + e^{-} \rightarrow Fe^{++}$$

The Bronsted Acidobasicity of Water

(*Conjugated acids and bases are indicated in italics)

Dissociation of water on metal surfaces (Bronsted acidobasicity)

 $V_{H} = \sigma_{ad}/C_{H}$

Formation de complexes hydratés

(Acidobasicité de Lewis)

cation solvaté \rightarrow cation hydraté

$$(M^{++}, H_2O) \rightarrow (MOH_2)^{++}$$

Hydrolyse des complexes hydratés

(Acidobasicité de Bronsted)

Hydrolyse

 $(MOH_2)^{++} \rightarrow MOH^+ + H^+$

Précipitation de l'oxyde

 $MOH^+ \rightarrow MO + H^+$

Oxydoreduction and Lewis acidobasicity of water

Metal water interactions The first steps

Physisorption

Chemisorption

(Lewis reaction)

Deprotonation (Bronsted reaction) + Oxidation

Water corrosion

Water passivation

Competition between water corrosion and passivation processes (summary)

Corrosion outlook:

Anodic (electron producing) and cathodic (electron consuming) reactions

Ox +e⁻
$$\rightarrow$$
 Red
$$\begin{cases} 2H_3O^+ + 2e^- \rightarrow 2H_2O + H_2 \\ 2H_2O + O_2 + 4e^- \rightarrow 4OH^- \\ Fe^{+++} + e^- \rightarrow Fe^{++} \end{cases}$$

The Charge transfers (electrons and ions) between the metal and the aqueous solution produces a potential difference

Effect of the potential drop on the electrochemical equilibria of water

- V is the potential difference between water and the electron reservoir,
- The Standard hydrogen electrode (V=0) is defined by pH=0 and p(H2)=1.Atm

Electrochemical equilibria

$$H_2O + \frac{1}{2}O_2 + 2e^- \leftrightarrow 2OH^-$$

$$H_2O + \frac{1}{2}H_2 \leftrightarrow H_3O^+ + e^-$$

$$V = 1,23^{Volts} + \frac{kT}{q} (Ln(H^+) + \frac{1}{4} \ln(pO_2))$$
$$= 1,23^{Volts} - 60^{mV} (pH - \frac{1}{4} \log(pO_2))$$

$$V = \frac{kT}{q} (Ln(H^{+}) - \ln\sqrt{pH_2}) = -60^{mV} (pH + \log\sqrt{pH_2})$$
22

Corrosion equilibria

At a metal electrode, several potential and pH dependent reactions occur

(1) Anodic dissolution:

 $M \leftrightarrow M^{++}+2e^{-}$

(2) Dissolution or Precipitation of the oxide

M⁺⁺+H₂O ↔MO+2H⁺ (3) Passivation

 $M+H_2O \leftrightarrow MO+2H^++2e^-$

Assuming local equilibria, the mass action law writes

$$V = cst. + 2.3 \frac{kT}{2q} \log(c)$$

$$pH + \frac{1}{2}\log(c) = cst.$$

$$V + 2.3 \frac{kT}{q} \, pH = cst.$$

Where c is the concentration in dissolved cations near the metal interface.

C results from the balance between the dissolution rate and the diffusion flow $J \square c$ from the metal surface to the solution bulk (where c=0)

The dissolution rate is then proportionnal to c

The Pourbaix diagrams of metals

In diffusion controlled kinetics, the corrosion current j is proportionnal to the concentration c in solute cations near the surface. An arbitrary concentration c =10⁶M is chosen, below wich corrosion is disregarded ²⁴

Pourbaix diagram of Aluminium

(1)
$$Al^{+++} + 2 H_2O \iff AlO_2^- + 4 H^+$$

(2) $Al + 3 H_2O \iff Al_2O_3 + 6 H^+ + 6 e^-$
(3) $2 Al^{+++} + 3 H_2O \iff Al_2O_3 + 6 H^+$
(4) $Al_2O_3 + H_2O \iff 2 AlO_2^- + 2 H^+$
(5) $Al \iff Al^{+++} + 3 e^-$
(6) $Al + 2 H_2O \iff AlO_2^- + 4 H^+ + 3 e^-$

A 1 I I I

 \mathbf{a}

NB: this diagram is drawn for 1µM/I concentrations in solute species

Effect of the potential drop on the Corrosion kinetics. Polarisation curves:

Both anodic and cathodic currents depend on the potential difference

V = Electrode potentialV_{cor} = Corrosion potential

I = Current density

The Tafel law

CU in $H_2SO_4(0.5M) + CuSO_4(0.075M)$ 3 log |i|/mA cm⁻² 2 b_{c} : 120 mV $b_{\rm a}$: 40 mV םי 0 L - 300 100 - 200 -1000 η/mV The Tafel law: I = B.exp (2.3 V/b) $V = cst + b \log i$

In the cathodic domain: Proton reduction

In the anodic domain: Anodic dissolution

Part II) Passive films

(a) First (hydrated) oxide layer

(b) ion hopping and film growth

(over)simpified model of passive film

Electron transfer from metal to electrolyte redox system (e.g. Fe⁺⁺⁺/Fe⁺⁺⁾ or on metallic complexes (MOH⁺ type) located at IHP

Density: F= $\sigma_{ss}/\epsilon \sim 10^6 \text{ V/cm} \Leftrightarrow \sigma_{ss}/q \sim 10^{14} \text{ cm}^{-2}$

Effect of the electric field

Ionic conduction

 The electric field drives the positively charged species (cations, anionic vacancies...) toward the outer interface, and the negatively charged species (anions, cationic vacancies ...) toward the inner interface

Electrostriction

 Strong electric field produce a so called electrostriction force, perpendicularly to the field, This force is normally equilibrated by the cohesion forces in the oxide. A decrease in these cohesion forces may therefore produce local breakdown of the passive film (Sato)

Défauts ponctuels

Pour les films passifs minces, on considère généralement que la densité en défauts ponctuels (ions en excès et lacunes) est très faible:

 $\rho << 1/L^3 \sim 10^{20} \text{ cm}^{-3}$ (pour L ~ 2nm)

Les défauts ponctuels sont chargés et agissent comme pièges électroniques

Suivant leur charge, ils migrent vers le métal ou l'interface externe qui peuvent constituer des sources ou des puits de défauts.

Cation vacancies migrate toward the metal film interface where they anihilate

Oxygen deposition

Water deprotonation produces Oxygen anions excess

Cation hopping \Rightarrow film growth

Growth kinetics is controlled by the cation migration rate from the mf interface (⇔ vacancies migration to the mf interface)

Cation vacancies produced by the film growth

Croissance des films (details)

- Un cation est transféré du film vers le film hydraté d'extrème surface où il prend la place d'un proton qui est rejeté en solution
- Le processus global se résume à une déprotonation de l'eau et à une injection de lacunes cationiques dans le film
- Sous l'effet du champ électrique les lacunes cationiques créées sont drainées par le champ électrique vers l'interface métal-film où elles s' anihilent

Capacité de croissance

La Croissance du film implique le transfert d'une charge par unité de surface:

$$\left| dQ = \frac{Zq}{\delta^3} dL \right|$$

où δ^3 est le volume cationique moyen et $v = \frac{Zq}{\delta^3} \sim 18 \text{ Cb/mm}^3$ dans le cas de ZrO_2

Et engendre une augmentation dV de chute de potentiel V=F.L à travers le film:

dV=FdL+LdF.

if dF~0 then F = dV/dL = v / C

C=v /F est la capacité de croissance

 $C = 15 \text{ mF/cm}^2$

pour F = $1.2 \ 10^6 \text{ V/cm} (1/\text{F} \sim 8 \text{ nm/V})$

L'augmentation de potentiel d'électrode est entièrement absorbée par la croissance du film **Zry4** poli 4000 dans Na_2SO_4 1M pH 6.6 23°C désaéré. Tracé de courbes de polarisation à plusieurs vitesses de balayage s . Le courant mesuré est sensiblement constant dans le domaine passif. j est sa valeur pour V = 1 V/SCE.

la Capacité **C** = **j**/**s** = **jdt/dV** = **dQ/dV** est sensiblement constante et proche d'une capacité de croissance.

Loi du Champ fort (mise en évidence expérimentale)

Une analyse plus fine des résultats précédents montre que C=j/s et donc aussi F = vs/j ne sont pas rigoureusement constants et varient linéairement avec Ln j :

 $F = vs/j = F^*.Ln(j/j^*)$

Avec
$$F^* = 9 \ 10^4 \text{ V/cm}$$

 $j^* = 0,7.10^{-9} \text{ A/cm}^2$

D'où la loi dite du Champ fort :

$$j = j * \exp \frac{F}{F^*}$$

Loi du Champ fort: justification théorique

Transport thermiquement activé:

 $J^+ = K_0 exp - W^+/kT$

Effet du Champ électrique:

 $W^+=W_0 - ZqF\alpha\delta$

 $\Rightarrow J = K(exp ZqF\alpha\delta/kT - exp - ZqF(1-\alpha)\delta/kT$

$$\alpha = 0,5 \Longrightarrow \qquad J = 2k$$

$$J=2KF*sinh\frac{F}{F*}$$

Où 2K est la conductivité et $F^* = \frac{kT}{Z\alpha q\delta}$

pour Z α =2 et δ ~1 nm) on trouve:

$$F^{*}\sim 10^{5}V/cm$$

Loi d 'Ohm: $F \ll F^* \Longrightarrow J = 2K.F$

$$\int_{0}^{\checkmark} \text{ Loi du Champ Fort : } F >> F^* \Rightarrow J = K.exp \frac{F}{F^*}$$

Loi de croissance en mode potentiostatique (Loi Logarithmique Directe)

Chronoampèremétrie potentiostatique

Réalisée sur Zry4 poli 4000 polarisé à 1 V/SCE dans Na2SO4 1M pH 6.6 23°C désaéré.

m = d (Ln j)/d (Ln t) \rightarrow -1 quand t $\rightarrow \infty$

Approximation au premier ordre

$$\textbf{LF=L}_{0}\textbf{F}_{0}\textbf{=V}_{f}\textbf{=cst.} \Rightarrow \textbf{LdF+FdL=0}$$

$$\Rightarrow F_0(L-L_0) + L_0(F-F_0) = 0$$
$$\Rightarrow F/F_0 - 2 - I/I_0$$

dL/dt =cst. Exp F/F*
$$\Rightarrow$$

L-L₀ = a. Ln(1+t/
$$\tau$$
)

(Où a et τ sont des constantes vis-à-vis du temps, mais dépendent de V_f)

$$j = v.dL/dt = va/(1+t/\tau) \implies$$

Loi de Mott:

$$\frac{1}{j} \approx \frac{1}{j_0} (1 + \frac{t}{\tau})$$

Compléments

Loi logarithmique inverse (Approximation au second ordre)

> L 'approximation au premier ordre pour le champ donne

> > F_0 -F = b. Ln(1+t/ τ)

En reportant cette valeur dans l'équation

 $1/L=F/V_{f}$

on obtient une approximation au second ordre pour L:

 $1/L = 1/L_0 - b. Ln(1+t/\tau)$

Epaisseur limite

En mode potentiostatique stationnaire

$$J = K_{fs} \exp \frac{F}{F^*} = \frac{1}{\delta^3} \cdot \frac{dL}{dt} + J_{dis}(V_H)$$
$$\Rightarrow L = \uparrow (t)$$

Une épaisseur limite $\bar{L} = \frac{V_f}{\bar{F}}$ est atteinte lorsque $F = \bar{F} = F * Ln \frac{J_{dis}}{K_{fs}}$ $\left[\frac{d \bar{L}}{dV_f} = \frac{1}{\bar{F}}\right] \sim 10^{-6} \text{ cm/V} = 1\text{ Å/10mV}$

Loi de croissance

loin de l 'épaisseur limite:

$$\frac{dL}{dt} \approx \delta^3 . K_{fs} \exp \frac{F}{F^*} = \delta^3 . K_{fs} \exp \frac{V_f}{LF^*}$$

Les électrons dans le film

L'hypothèse $\sigma_f=0$ (film non chargé) est totalement arbitraire

Le film passif est suceptible de contenir des charges ioniques et des charges electroniques ($\Rightarrow \sigma_f \neq 0$)

Les Charges ioniques sont constituées par les défauts fonctuels (ions et lacunes) dues à la croissance, a la corrosion, aux défauts de structure, etc...

Les charges électroniques résultent du piègeage des électrons sur des niveaux accepteurs, ou à leur dépiegeage à aprtir de niveaux donneurs, en équilibre avec le niveau de Fermi du métal et les niveaux de valence et de conduction de l'oxyde (comportement semi-conducteur)

- Niveau de conduction (E_c)
- Niveau de valence (E_v)
- Niveaux pièges (E_T)
- Niveau de Fermi (E_F)

Loi d'action de masse et loi de Fermi Dirac

à l'approximation semi classique

Soit N(E) le nombre d' « états » électroniques à l'énergie E

Chaque « état » électronique peut être vide (oxydé) ou occupé (réduit)

. Red \leftrightarrow Ox + e⁻ (metal)

Un niveau peut être accepteur (neutre si vide, négatif si occupé) ou donneur (neutre si occupé, positif si vide)

On notera *n* le nombre d'états occupés et *N-n* = nombre d'états vides. La loi d'action de masse s'écrit:

n.exp -E/kT=cst.(*N*-*n*).exp -E_F/kT

La probabilité d'occupation *n/N* d'un état est donc donnée par:

Qui est formellement analogue à la loi de Fermi-Dirac:

$$\frac{n}{N-n} = \exp \frac{\frac{E_F - E}{kT}}{\frac{kT}{1 + \exp \frac{E - E_F}{kT}}}$$

11

 \boldsymbol{L}

 \boldsymbol{L}

A très basse température, on peut considérer les niveaux d'énergie comme pleins en dessous du niveau de Fermi, vides au dessus

Mise en évidence des propriétés semi-conductrices des films passifs: comportement de Mott Schottky

Typical C⁻² vs. V Diagram on an Fe electrode passivated in borate buffer (pH 8,4)

La Capacité d'interface suit une loi de Mott –Schottky due au piegeage-dépiegage des electrons dans le film

Effet du champ électrique sur le comportement semi-conducteur des films passifs

La répartition des niveaux d 'énergie est fortement perturbée par le champ électrique qui règne dans le film

Modèle simplifié : Les niveaux sont remplis en dessous du niveau de Fermi, vides au dessus

Capacité de Charge d'espace.

$$X{=}\lambda_{\scriptscriptstyle D}\sqrt{rac{q\Delta V}{kT}}$$

$$\Rightarrow \ \left[\Delta Q\right]^2 = 2\varepsilon q N \Delta V$$

Capacité **C** = $d\Delta Q/d\Delta V$

$$\frac{1}{C^2} = \frac{2(V_0 - V)}{N\varepsilon kT}$$

so lutio n

M.S. Diagram obtained on a mechanically polished AISI430 type steel, in deaerated NaCI (0.02M) pH6.6 after polarising 16h at +200mV/SCE.

Impedance was measured using several frequencies: The frequency dispersion reflects the time needed for the trapping-detrapping process

Other Instances of M.S. behaviour (2,3)

Photo-electrochemical effects

An instance of PEC response of passive films

Potential dependence of the photocurrent (\blacksquare) and dark current (\Box) for a passive film formed in NaCl 0.02mol.dm⁻³, Ar10%H₂ (t_p=15h30), pH_f = 3.0. Experimental conditions: pHm = 5.2, sweep rate 0.1V/120s. I=501.7nm, P=60mW.cm-2, light modulation frequency 45Hz.

Corrosion of passive films: The acidic attack

- The first step of acidic attack results in the net transfer of a negative charge (O⁻⁻) from the film to the environment.
- The reaction rate is then expected to decrease when the electrode potential increases
- When the O⁻ vacancies are in a sufficient amount, the cationic bond is weakened leading to the film dissolution
- This corrosion is expected to be uniform on all the surface

Corrosion in chloride containing electrolytes:

The vacancy Injection process

1) Choride ions favours the action dissolution et the atomic scale, creating cation vacancies inside the film.

2) Under the effect of the electric field, cation vacancies migrates toward the metal/film interface, where they eliminate proportionally to their concentration $\Rightarrow dX/dt = J - K.X$ leading to the stationnary concentration X = J/K

Destabilising effect of cation vacancies

(Role of the Chloride ions)

- 1) Choride ions favours the action dissolution et the atomic scale, creating cation vacancies inside the film.
- 2) Under the effect of the electric

field, these vacancies migrate toward the metal/film interface, where they eliminate proportionally to their concentration $\Rightarrow dX/dt = J -$ K.X leading to the stationnary concentration X= J/K

- 3) <u>When the vacancy</u> concentration increases, the passive film cohesion decreases. At a critical value X _{crit} the film may locally break down.
- 4) <u>Electrostriction theory</u>: When the cohesion forces do not counterbalance the electrostriction forces, «local» film breakdown may occur (cf. N.Sato).

NB: The mechanical breakdown should release the mechanical stresses around the breakdown point. This form of corrosion is then expected to be localized

The Pit nucleation potential

1) The vacancies creation rate J increases with the solution chloride content and electrode potential :

 $J = cst.c^{n}.exp V_{fs}/\phi = cst.c^{n}.exp (1-\gamma)V_{E}/\phi$

where $\gamma = dV_f/dV_E$ is a share coefficient

2) A pit nucleation potential may be defined as:

 $J(C,V_{pit}) = KX_{crit}$

It decreases when the chloride concentration increases

The Pit Nucleation potential (details)

Below the pitting potential:

Any increase in electrode potential is concentrated inside the passive film. Then the potential drop at the outer interface keeps constant. The vacancy concentration in the film is negligible and does not depend on electrode potential

Above the pitting potential:

The metal Fermi level is pinned on the electron surface states energy level. Then the potential drop within the film is constant and any increase in electrode potential concentrates at the film electrolyte interface. The vacancy concentration in the film quickly increases with electrode potential

The pit nucleation potential could simply correspond to the pinning of the Fermi level on an electron acceptor level present at the film solution interface.

Part III: Passivity breakdown

Polarisation curves in acidic media

Stainless steels

Modelling the polarisation curve (1)

Passivation:	$M+H_2O \leftrightarrow MO + 2H^+ + 2e^-$	(1)
Dissolution:	$M \rightarrow M^{++} + 2e^{-}$	(2)

Fraction passivée (recouverte par MO) = θ Activité du proton en surface ∞ $\xi = H^+ \exp{-\frac{qV}{kT}}$ Loi d'action de masse (1) : $1 - \theta \propto \theta \xi^2 = \theta / u^2$ avec:

$$u = \xi_{1/2} / \xi = \left[\xi_{1/2} / H^+\right] \exp \frac{qV}{kT} \implies \exp \frac{qV}{kT} \propto u H^+ / \xi_{1/2}$$

 $\theta = \frac{u^2}{1 + u^2} = 0 \text{ pour les potentiels cathodiques et/ou les milieux acides}$ = 1 pour les potentiels anodiques et/ou les milieux basiques

Loi cinétique (2) (Tafel) :

$$i \propto [1 - \theta] \exp \frac{\beta q V}{kT} \propto [H^+]^{\beta} \frac{u^{\beta}}{1 + u^2}$$

Exercice

Modelling the polarisation curve (2)

$$i \propto [1- heta] \exp rac{eta q V}{kT} \propto [H^+]^eta rac{u^eta}{1+u^2}$$
 avec $u = [\xi_{1/2} / H^+] \exp rac{qV}{kT}$

Qui varie comme U^{β} pour les potentiels cathodiques et/ou les milieux acides Qui varie comme $U^{\beta-2}$ pour les potentiels anodiques et/ou les milieux basiques Si $\beta < 2$, cette fonction présente un maximum i_{crit} pour u=u_{crit}, V=V_{crit}, avec: $u_{crit}^2 = \beta/(2-\beta) (\Rightarrow \theta = \beta/2)$. Il en résulte que:

Polarisation Curve (general)

Le courant global i est la somme de 3 courants partiels:

1) Le courant de dissolution anodique i_A

2) Le courant sur les sites oxydes, proportionnel a θ et tendant vers une constante i_P lorsque θ tend vers 1

3) Le courant cathodique i_{K}

Depassivation pH

critical passivation current in acidified Na2SO4

Behaviour of Al in neutral chloride containing media (Al1070 in deaerated NaCl pH6.6)

As for Stainless steels, The pitting potential diminishes linearly with the logarithm of the chloride content.

The Corrosion risk in chloride containing acidic media

• The fall in pH and the increase in the CI⁻ content reduces the passive range

The successive stages of localised corrosion

- Initiation
 - The generic modes (*Pitting*, *Crevice*, SCC...)
 - Environment effects (Marine, atmospheric, MIC...)
 - Effect of the material (specific)
- Propagation (common mode)
 - Chloride enrichment
 - Hydrolysis of dissolved cations
 - High propagation rate

Pitting Corrosion in neutral chloride containing media

(AISI 304)

The pitting potential is an appropriate criterion for pitting corrosion resistance

The successive steps of pitting corrosion

- **Pit nucleation** (nanometric scale) Local passive film breakdown.
- **Metastable pitting** (micrometric scale) Possible repassivation, current transients.
- Irreversible damage (milimetric scale) *Pit propagation*

Crevice corrosion?

What happens in a crevice?

1) Cathodic reaction quickly exhaust oxygen in the crevice. Further cathodic reaction occurs then outside

2) Anodic dissolution across the passive surface, leads to an enrichment in dissolved cations

3)Chloride enrichment : Influx of the majority anion to compensate for the positive charges (electromigration)

4) Hydrolysis of cations (\Rightarrow Hydrochloric acidity)

limited by the migration and the diffusion of reaction products outside the zone.

The remedies:

1) Material selection (for a "sufficient" resistance to acidic corrosion)

2) To avoid crevices!

Mechanical Effects The Detrimental effect of Stress ...

- Stress corrosion cracking
- Corrosion-Fatigue
- Fretting Corrosion ...etc...

Stress corrosion cracking

Conditions of occurrence: hot chloride containing environment.

Remedy: selection of appropriate grades. For instance, the use of austeno-ferritic or ferritic steels is preferable to FeCrNi austenitic steels.

The association of mechanical stress and corrosive conditions: may lead to damage which neither the mechanical stress nor the corrosion would have caused separately.

Optical microscopy

crack propagation rate

SCC facies

SEM Transgranular cracking

30 µm

Cracks in stainless steels can either be intergranular or transgranular or sometimes mixed.

Transgranular cracks often show continuous striations, perpendicular to the crack growth direction, which are generally considered to mark successive stages of propagation (discontinuous propagation rate).

Effect of residual stresses

IV) Metalurgical effects

Intergranular Corrosion of stainless steels: Carbide Precipitation and Chromium depletion

Chromium depletion in the vicinity of a grain boundary in an austenitic steel:a) transmission electron microscope imageb) corresponding iron and chrornium concentration profiles..

Heat Affected Zone close to the weldments

Example: Several secondary tubes are welded on a main tube. No post welding treatment was performed. Welds were then sensitised to intergranular corrosion, due to intergranular precipitation of chromium carbides in the heat affected zones. The corrosion looks locally « uniform » all around the tube weldments

Austenitic Steels

IGC: The remedies

Ferritic Steels

- Heat Treatments
 - solution treatment
 - annealing after welding (rarely used)
- Low Carbon Steels: C<0.03%
 - (304L, 316L, etc ..)
- Stabilised Steels
 - Stabilising elements : Ti, Nb, Zr.
 - Ex: Ti stabilised steel (grade 321) : Ti/C > 5 ? Maturation heat treatment

- Impossible solutions
 - Solution treatment
 - low carbon
- Possible solutions
 - annealing after welding
 - Stabilisation (Ti, Nb, Zr)
- Ex: Titanium stabilised steel
 - □ Ti>0.15% +4(C+N)
 - Other effect: sulfur trapping ⇒improvement of the pitting resistance
Pitting potentials of stainless steels

(In NaCl 0.02M)

Effect of the chromium content in an Fe - Cr alloy

- A: Steels with MnS (40 ppm S)
- B:Steels without MnS (+0,4%Ti)

Pitting on sulphide inclusions

Scanning electron microscopy (x 3000)

Pitting on a manganese sulphide

Ti=0.4%

Pitting at the boundary of a Ti nitride

Fe16Cr Mn=0.45% S= 40ppm

Prepitting events

during a polarisation at 200mV/SCE in NaCl 0.02M pH6.6

- Left: Typical anodic current variations for MnS containing steels.
- *Right:* Typical anodic micro-events for Ti bearing steels

Effect of the sulfides solubility on the pitting potential

In "Critical Factors in localized corrosion IV": Salt lake city 2002. The importance of being a metallurgist

Low Ni austenitic stainless steel

% of dissolved inclusions after immersion in

80

Modeling the effect of sulfides

•The sulfides dissolve more or less rapidly , depending on their stability and on the solution corrosivity. In pitting initation the sulfides act simply as sulfur species provider

•Sulfur containing species adsorb on the passive film close to the sulfide inclusion,

Promoting pit nucleation (local film breakdown) or

Preventing repassivation of nanopits The pitting potential characterizes either

- the pit nucleation or

- the stabilization of pit nuclei

Modeling the effect of sulfides (2)

- The earlier theories
 - Sulfide dissolution, producing an unfilmed bare metal surface
 - Does not take into account the effect of passive film on pit initiation. Passive film could act only through the cathodic reaction (in OCP conditions)
- Effect of thiosulfates
 - Sulfide dissolution produce thiosulfates which prevent repassivation in the occluded zone formed by a metastable pit.
- The effect of sulfide solubility
 - Sulfide inclusions may act simply as sulfur species sources.
 - Sulfur containing species (elemental sulfur, thiosulfates...???) redeposit around the inclusion and make the passive film sensitive to pitting corrosion
 - Steel resistance to pitting decreases as sulfide inclusion solubility increases:

• CaS < MnS < (Mn,Cr)S < CrS < TiS < CeS

- The Cr depletion theory (Nature, Vol 415, 14 Feb. 2002) does not meet basic metallurgical evidences. More the effect of steel making process is ignored
 - In SS, Mn sulfides content a small amount of Cr (~5% in 304). The larger the Cr content or the smaller the Mn content, the larger the pitting resistance.
 - Ti containing steel, free from MnS but containing Ti_xS, resist better to pitting than MnS containing steels. They can pit however, but at higher potential, temperature or chloride content. Inclusions other than sulfides can also initiate pits
 - Metastable pitting was also observed even on « pure » (inclusion free) Fe17Cr alloys

Conteracting the sulfur effects on pitting initation

by T.Sourisseau and alias, Cors.Sci. 2005, 47, p1097

When added in aqueous solution,

Cu Inhibits pits initiation

(formation of insoluble CuS-Cu2S)

When added as alloying element

No effect is found on the number of transients

The favourable effect of <u>dissolved copper</u> in preventing pit initiation is revealed by the number of pitting transients

The possible effect of <u>alloyed copper</u> in preventing pit initiation *is not revealed* by the number of transients

Effect of metallic copper on the pitting potential by T.Sourisseau and alias, Cors.Sci 2005.

Such an alloying addition of Cu is even found to decrease the pitting potential , and overmore the repassivation potential

1) Metalic Copper hinders repassivation

It was suggested that metallic Copper redeposits at pit bottom , inhibiting further Chromium oxidation, then preventing pit repassivation. The lower the pitting potential, the smaller the amount of dissolved Cu ions and then the larger the detrimental influence of Cu on the final result.

2) From the material performance viewpoint, it is worthy to note that this detrimental effect of Cu is revealed by both **repassivation** <u>and pitting potential</u>

The effect of cold rolling

by L..Peguet and alias, Cor.sci. In press)

Chemical composition of the investigated material in weight %.

The effect of cold rolling: results

A fair correlation is evidenced between the *pitting potential* and <u>Stable pitting</u> but *not* with the number of <u>metastable pitting transients</u>

Tensile deformation of a ferritic grade (no deformation martensite)

Chemical composition of the investigated materials in weight %.									
Grade	Elaboration	% C	% Mn	% Ni	% Cr	% Mo	% Cu	S (ppm)	% N
AISI 304	Industrial	0.037	1.42	8.66	18.18	0.25	0.22	12	0.038
AISI 430	Industrial	0.042	0.38	0.16	16.26	0.03	0.04	21	0.027

 Disks stamped from strained samples to be used in electrochemical characterization.

Number of metastable pits initiated during 24h at free potential in NaCl 1M + FeCl₃ 10^{-3} M.

	annealed	10%	20%	35%	60%
AISI 304	116	297	-	64	40
AISI 430	371	515	309	-	-

⇒ Even a ferritic grade exhibits a maximum in pit initiation.

Dislocations substructure

1 μm

Annealed

× 14832

20% colled-rolled Moderate strain : Fine lamellar structure by twinning, shear bands favoring dislocation pile-ups

70% colled rolled Large strain : Recovery process illustrated by dislocations cells and pile-ups destruction.

Mechano-electrochemical modeling

Alloying elements affect the extent of pit initiation frequency maximum via their influence on dislocation pile-ups stability.

	С	Ν	S (ppm)	Cr	Mn	Ni	Cu
304	0.03	0.04	51	17.9	1.5	8.5	0.2
LowNi	0.07	0.24	9	16.4	7.3	1.6	0.2
304-Cu	0.04	0.04	45	18.2	1.4	8.7	3.0
LowNi-Cu	0.06	0.19	20	16.5	7.7	1.8	2.9

SFE (mJ.m-2) = 25.7+2(%Ni)+410(%C)-0.9(%Cr)-77(%N)-13(%Si)-1.2(%Mn)+4(%Cu)

Pickering (1984) - Dulieu, Nutting (1964)

The effect of cold rolling: Conclusions

⇒ The unexpected maximum in pit initiation frequency does not depend on the deformation process nor on the presence of induced-martensite.

A major influence of dislocation pile-ups via the mecano-electrochemical effect is suspected. This explanation is supported by the role of alloying elements in the extent of pit initiation frequency maximum.

Effect of the surface finish condition on metastable pitting

by G.Berthomé and alias, Cors Sci.

The last stage of steel making process after cold rolling is the final annealing.

Two main conditions are of industrial interest for S.S. sheets:

2B condition:

Cold rolled sheet + annealing in oxidizing atmosphere

+ pickling in acidic bath then rinsing + skin pass

BA condition:

Cold rolled sheet + annealing in H2 containing atmosphere + skin pass

Pitting potential:BA > 2B

This produces some passive films of different Cr content and of different pitting corrosion resistances

The pitting potential is larger for BA than for 2B and the number of OCP pitting transients is smaller

Number of pitting transients: As rolled > 2B > BA

XPS analysis

The passive films fromed on 2B and BA differ by their chromium content and their semi conductive properties

In the two cases the Cr content is higher in the inner passive film than in the outer, and larger for BA than for 2B condition

Semiconductive behaviour by J. Amri and alias: in preparation

The passive film exhibits a p-type inner part and a n-type outer part. The electron states densities (acceptors in the inner part, donnors in the outer part) are given by the Mott Schottky plots

$$\frac{1}{C_{sc}^{2}} = \left| \frac{2}{\varepsilon_{r} \cdot \varepsilon_{0} \cdot q \cdot N_{q}} (V - V_{fb}) \right|$$

Mott-Schottky plots

2B : $N_d = 8.74 \cdot 10^{20} \text{ cm}^3$

BA : N_d = 5.11 . 10²⁰ cm³

Thhe electron donnor concentration in the outer passive film (which is likely related to the concentration in point defects) is smaller for BA than for 2B,

Going further (2) by J. Amri and alias: in preparation

The density of donnor states increases with the electrolyte chloride content,

Suggesting that the corresponding point defects are due to Chloride ions adsorption or incorporation in the outer passive film

Following this idea, the 2B film is less corrosion resistant due to its larger affinity for chloride ions

In this case the rate determining step is likely the nucleation step, and

the pitting potential and the number of transients are fairly correlated to the Pit nucleation sensitivity

Material: Fe17Cr

Surface finishing :

BA (Bright annealed)

2B (Pickled surface)

Test conditions: NaCl 0.5M pH 6.6 / 50°C Screw/wing system tightening = 0,2 N.m $S_{crev} = 0.85 \text{ cm}^2$

Crevice Intensity (µA) 71 0.12 72 0.12 72 0.1

150-

120-

0+ 0

5

Effect of the Surface Condition on the resistance to CC

Then $j_{crev}(2B) = j_{crev}(2B)$

Effect of the Surface Condition (2)

 ✓ BA finish exhibits better crevice corrosion resistance then 2B.

✓ The corrosion current is controlled by the the active area, depending on the critical depassivation pH

Corrosion feuilletante des allaiges d'aluminium

Alliages 7000 (aéronautique) à durcissement structural : précipitation durcissante type MgZn₂ Franchissement des obstacles (précipités) par les dislocations:

•<u>T6</u> : Revenu au pic = maximum de caractéristiques mécaniques

Tps de revenu

•<u>T76</u> : Sur-revenu = compromis entre CM et sensibilité à la corrosion feuilletante

Essai galvanostatique

Conclusion: The importance of being a metallurgist

Délamination des peintures

Délamination anodique

Délamination cathodique (Propagation à l'interface peinture/oxyde)

